Refine your search:     
Report No.
 - 
Search Results: Records 1-12 displayed on this page of 12
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Production of $$^{225}$$Ac for Targeted Alpha Therapy (TAT) using the experimental fast reactor Joyo

Maeda, Shigetaka; Kitatsuji, Yoshihiro

Enerugi Rebyu, 42(10), p.19 - 22, 2022/09

Ac-225 is attracting attention as an alpha-emitting medical radioisotope. Since its demand is expected to increase, domestic production of Ac-225 is required from the viewpoint of Japan's medical research and economic security. To establish the technical bases for the Ac-225 production, JAEA has evaluated the radioactivity that can be produced in the experimental fast reactor Joyo and designed the concept that upgrades the existing facilities for transporting the irradiated target from Joyo to a neighboring PIE facility rapidly. Efficient Actinium-225 Separation from Ra-226 irradiated in a fast reactor was studied. Ba and La were used as alternatives to Ra and Ac, respectively. By using DGA resin as an adsorbent, it can be expected that Ra and impurities generated by irradiation will be removed and Ac will be isolated. This study has revealed that Joyo can sufficiently produce Ac-225 as a raw material for pharmaceuticals.

Journal Articles

Thermal-neutron capture cross-section measurement of $$^{237}$$Np using graphite thermal column

Nakamura, Shoji; Endo, Shunsuke; Kimura, Atsushi; Shibahara, Yuji*

KURNS Progress Report 2020, P. 94, 2021/08

The present study selected $$^{237}$$Np among radioactive nuclides and aimed to converge a contradiction between reported thermal-neutron capture cross sections. Neutron irradiation was carried out using the graphite thermal column equipped with the Kyoto University Research Reactor. A solution equivalent to 950 Bq order of radioactivity was pipetted out of a $$^{237}$$Np standard solution and dropped onto a fiber filter, which was then dried with an infrared lamp to prepare a $$^{237}$$Np sample. The $$^{237}$$Np sample was quantified using 312-keV gamma ray emitted from $$^{233}$$Pa in a radiation equilibrium with $$^{237}$$Np. To monitor a thermal-neutron flux component at an irradiation position, the $$^{237}$$Np sample was irradiated together with several stable nuclides as neutron flux monitors: $$^{45}$$Sc, $$^{59}$$Co, $$^{98}$$Mo, $$^{181}$$Ta and $$^{197}$$Au. The reaction rate of $$^{237}$$Np was obtained from gamma-ray yields given by $$^{238}$$Np and $$^{233}$$Pa, and then the thermal-neutron capture cross section of $$^{237}$$Np was derived.

JAEA Reports

The Sorption database of radionuclides for cementitious materials

Kato, Hiroshige*; Mine, Tatsuya*; Mihara, Morihiro; Oi, Takao; Honda, Akira

JNC TN8400 2001-029, 63 Pages, 2002/01

JNC-TN8400-2001-029.pdf:1.81MB

Cementitious materials will be used for the TRU waste repository as a component of engineered barrier system. The distribution coefficients which represent the retardation of radionuclides migration for the cementitious materials would be one of the important parameter for the safety assessment. The much information of radionuclide sorption onto the cementitious materials has been accumulated through the study in the world. Therefore it is necessary to compile the information and Kd of the radionuclides reported in previous studies. In this report, the Kd of the important radionuclides, such as C, Ni, Se, Sr, Zr, Nb, Mo, Tc, Sn, I, Cs, Sm, Pb, Ra, Ac, Th, Pa, U, Np, Pu, Am, Cm, for the cementitious materials were compiled as the Sorption Database (SDB). For radionuclides to be sensitive to the redox potential, e.g. Se, Tc, Pa, U, Pu and Np, some Kds measured under the controlled atmosphere had been reported, and few Kds measured under the controlled redox potential had been reported. For Se, Mo, Sm, Cm and Ac, the distribution coefficients had not been reported, therefore distribution coefficients of Se and Mo for OPC (Ordinary Portland Cement) pastes were measured by batch sorption experiments and these data were added into the SDB.

Journal Articles

Nuclear fission of neutron-deficient protactinium nuclides

Nishinaka, Ichiro; Nagame, Yuichiro; Tsukada, Kazuaki; Ikezoe, Hiroshi; Sueki, Keisuke*; Nakahara, Hiromichi*; Tanikawa, Masashi*; Otsuki, Tsutomu*

Physical Review C, 56(2), p.891 - 899, 1997/08

 Times Cited Count:20 Percentile:71.99(Physics, Nuclear)

no abstracts in English

Journal Articles

Radioactive elements

; *; *;

Muki Kagaku Zensho XV?-3, 507 Pages, 1974/00

no abstracts in English

Oral presentation

Medical RI production using domestic nuclear infrastructures for self-sustenance, 6; Study of Ra/Ac separation method in Ac-225 production using fast reactor

Ouchi, Kazuki; Kitatsuji, Yoshihiro; Maeda, Shigetaka; Takaki, Naoyuki*

no journal, , 

Efficient Actinium-225 Separation from Ra-226 irradiated in fast reactor was studied. Ba and La were used as alternatives to Ra and Ac, respectively. By using DGA resin as an adsorbent, it can be expected that Ra and impurities generated by irradiation will be removed and Ac will be isolated.

Oral presentation

Medical RI production using domestic nuclear infrastructures for self-sustenance, 5; Ac-225 production using the experimental fast reactor Joyo

Sano, Aaru; Maeda, Shigetaka; Itagaki, Wataru; Sasaki, Shinji; Sasaki, Yuto*; Takaki, Naoyuki*

no journal, , 

Ac-225 is attracting attention as an alpha emitting medical radioisotope. Since its demand is expected to increase, domestic production of Ac-225 is required from the viewpoint of medical research and economic security of Japan. To establish the technical bases for the Ac-225 production, JAEA has evaluated the radioactivity can be produced in the experimental fast reactor Joyo and designed the concept that upgrades the existing facilities for transporting the irradiated target from Joyo to a neighboring PIE facility rapidly. This study has revealed that Joyo can sufficiently produce Ac-225 as a raw material for pharmaceuticals.

Oral presentation

Progress of production of Actinium-225 using the experimental fast reactor Joyo

Maeda, Shigetaka

no journal, , 

Regarding Actinium-225, which is one of the medical radioisotopes and has been attracting attention today, we will report on the domestic movement toward domestic production, the research and development plan and progress for production of Actinium-225 using the experimental fast reactor Joyo.

Oral presentation

Ac-225 production using the experimental fast reactor Joyo

Sano, Aaru; Sasaki, Yuto*; Sasaki, Shinji; Iwamoto, Nobuyuki; Ouchi, Kazuki; Kitatsuji, Yoshihiro; Maeda, Shigetaka; Takaki, Naoyuki*

no journal, , 

Ac-225 can be applied to cancer treatment of various sites, but world supply is scarce. In this study, in order to study the production of Ac-225 using fast neutrons, we evaluated the amount of Ac-225 produced by fast neutron irradiation of Joyo. Burn up calculations were performed with Ra-226 as the target using ORIGEN2.2 for the evaluation of the production amount. In addition, the uncertainty of Ac-225 production was evaluated from the nuclear reaction cross section of the target nuclide and the neutron flux of Joyo. This study showed that a large amount of Ac-225 can be produced by irradiating Ra-226 at Joyo. In the future, we will improve the accuracy of evaluation of the production amount through demonstration experiments.

Oral presentation

Domestic production of Mo-99 and Ac-225 using commercial PWR and fast experimental reactor Joyo

Takaki, Naoyuki*; Iwahashi, Daiki*; Sasaki, Yuto*; Maeda, Shigetaka

no journal, , 

The production technology of medical radioisotopes (RI) using existing nuclear fission reactors has been studied to improve/achieve their domestic preparedness in Japan. The target nuclides currently considered in our project are Mo/Tc which is the most commonly used ones in medical diagnosis and Ac-225 which is recently known as effective alpha emitting nuclide for targeted alpha-particle therapy. Existing fission reactors, PWRs and Joyo, have potentials to work as excellent facilities for medical isotope production, as by-products of heat/electricity generation without consuming electricity and need for new plant construction.

Oral presentation

Evaluation of $$^{225}$$Ac production rate and its uncertainty in the experimental fast reactor Joyo utilizing the total Monte Carlo method

Sasaki, Yuto; Iwahashi, Daiki*; Maeda, Shigetaka; Takaki, Naoyuki*

no journal, , 

Ac-225 is attracting attention as an alpha emitting medical radioisotope. Since its demand is expected to increase, domestic production of Ac-225 is required from the viewpoint of medical research and economic security of Japan. To establish the technical bases for the Ac-225 production, JAEA has evaluated the radioactivity can be produced in the experimental fast reactor Joyo and designed the concept that upgrades the existing facilities for transporting the irradiated target from Joyo to a neighboring PIE facility rapidly. This study has revealed that Joyo can sufficiently produce Ac-225 as a raw material for pharmaceuticals.

Oral presentation

Progress of production of Actinium-225 using the experimental fast reactor Joyo

Maeda, Shigetaka

no journal, , 

Regarding Actinium-225, which is one of the medical radioisotopes and has been attracting attention today, we will report on the domestic movement toward domestic production, the research and development plan and progress for production of Actinium-225 using the experimental fast reactor Joyo.

12 (Records 1-12 displayed on this page)
  • 1